Citation: | WANG Mengmeng, GUO Yunhua, CHENG Baochen, HU Yi, GAO Haibo, ZHANG Jianfeng. General Parameter Evaluation Concerning Equipment Configuration for Polar Cruise with Combination of Multiple Methods[J]. Navigation of China, 2022, 45(1): 54-62. DOI: 10.3969/j.issn.1000-4653.2022.01.010 |
[1] |
刘瀛昊,佟福山,高良田.基于原型测量的极地航行船舶船体冰载荷分析[J].振动与冲击, 2017, 36(7):226-233.
|
[2] |
吴刚,王燕舞,张东江.中国极地破冰船总体与结构设计技术现状与展望[J].中国造船, 2020, 61(1):194-203.
|
[3] |
薛彦卓,倪宝玉.极地船舶与浮体结构物力学问题研究综述[J].哈尔滨工程大学学报, 2016, 37(1):36-40.
|
[4] |
陈明,褚凤天.基于云模型和组合权重的极地科考船技术评价[J].中国造船, 2017, 58(1):193-201.
|
[5] |
侯远杭,胡玉龙,王文全,等.船型方案优选的多目标群决策方法[J].上海交通大学学报, 2012, 46(3):385-389.
|
[6] |
安进,徐廷学,曾翔,等.组合赋权下的装备质量状态信息融合评估方法[J].控制与决策, 2018, 33(9):1693-1698.
|
[7] |
ZHU G N, HU J, REN H L.A Fuzzy Rough Number-Based AHP-TOPSIS for Design Concept Evaluation Under Uncertain Environments[J].Applied Soft Computing Journal, 2020, 91:1-18.
|
[8] |
WU X L, HU F.Analysis of Ecological Carrying Capacity Using a Fuzzy Comprehensive Evaluation Method[J].Ecological Indicators, 2020, 113:1-13.
|
[9] |
GUAN F, CUI W W, LI L F, et al.A Comprehensive Evaluation Method of Sensor Selection for PHM Based on Grey Clustering[J].Sensors, 2020, 20(6):1-14.
|
[10] |
MADHUMITA S, SATIPRASAD S, ANIRBAN D, et al.Effectiveness Evaluation of Objective and Subjective Weighting Methods for Aquifer Vulnerability Assessment in Urban Context[J].Journal of Hydrology, 2016, 541:1301-1315.
|
[11] |
DUAN Y C, CAI Y H, WANG Z K, et al.A Novel Network Security Risk Assessment Approach by Combining Subjective and Objective Weights Under Uncertainty[J].Applied Sciences, 2018, 8(3):1-20.
|
[12] |
HE B, CAO X Y, HUA Y C.Data Fusion-Based Sustainable Digital Twin System of Intelligent Detection Robotics[J].Journal of Cleaner Production, 2021, 280:1-21.
|
[13] |
CAO H, ZHANG J D.Cloud Model-Based Intelligent Evaluation Method in Marine Engine Room Simulator[J], IEEE Access, 2020, 8:168502-168515.
|
[14] |
DINA M A, MAGNUS S.Evaluating Alternative Energy Carriers in Ferry Transportation Using a Stochastic Multi-Criteria Decision Analysis Approach[J].Transportation Research Part D, 2020, 86:1-12.
|
[15] |
ZHANG Z L, YE H R, DAN Y H, et al.Novel Method for Comprehensive Corrosion Evaluation of Grounding Device[J].IEEE Access, 2020, 8:72102-72111.
|
[16] |
秦庭荣,丁宁,胡勤友,等.基于证据理论的船舶应急脆弱性评估[J].中国航海, 2016, 39(2):35-39.
|
[17] |
PELORUS, HRISTOS K.The Application of the AHP-TOPSIS for Evaluating Ballast Water Treatment Systems by Ship Operators[J].Transportation Research Part D, 2017, 52:172-184.
|
[18] |
肖青,胡豪,李晶.基于CRITIC-TOPSIS法的邮船船型选择[J].上海海事大学学报, 2018, 39(3):53-56+84.
|
[19] |
陈继红,孟威,周康,等.基于灰关联的中国邮轮港口竞争力评估[J].应用泛函分析学报, 2016, 18(3):284-297.
|
[20] |
郑士君,韩成敏,董建华.船舶状态综合评估模型的建立[J].中国航海, 2008(2):144-147+157.
|
[21] |
CHEN J H, BIAN W T, WAN Z, et al.Identifying Factors Influencing Total-Loss Marine Accidents in the World:Analysis and Evaluation Based on Ship Types and Sea Regions[J].Ocean Engineering, 2019, 191:1-9.
|
[22] |
王宗润,汤小芸.基于TOPSIS方法改进的多属性决策模型:最小化偏好反转[J/OL].控制与决策:1-10[2020-11-23].https://doi.org/10.13195/j.kzyjc.2019.0536.
|
[23] |
中国船级社.国际海事组织防污公约2011年综合文本[M].北京:人民交通出版社, 2012:80.
|
[24] |
International Maritime Organization.International Code for Ships Operating in Polar Waters (Polar Code)[J].Resolution MSC, 2014, 385(94).
|
[25] |
Bureau Veritas.Rules for the Classification of Ships Operating in Polar Waters and Icebreakers[S].2017.
|
[26] |
中国船级社.极地船舶指南[S].2016.
|
[27] |
赵书强,汤善发.基于改进层次分析法、CRITIC法与逼近理想解排序法的输电网规划方案综合评价[J].电力自动化设备, 2019, 39(3):143-148+162.
|
[28] |
余仁波,徐廷学,李田科,等.基于主客观权重一致的导弹保障性评价[J].四川兵工学报, 2011, 32(3):9-12.
|