• Guide to core journal of China
  • CSCD indexed journals
  • JST indexed journals
  • The key magazine of China technology
  • T1 level of high-quality scientific and technological journals of China Association for Science and Technology
ZHU Feixiang, LI Guoshuai, WANG Shaobo. Test Method and Test System for Intelligent Ship Navigation System[J]. Navigation of China, 2022, 45(1): 127-132. DOI: 10.3969/j.issn.1000-4653.2022.01.021
Citation: ZHU Feixiang, LI Guoshuai, WANG Shaobo. Test Method and Test System for Intelligent Ship Navigation System[J]. Navigation of China, 2022, 45(1): 127-132. DOI: 10.3969/j.issn.1000-4653.2022.01.021

Test Method and Test System for Intelligent Ship Navigation System

More Information
  • Received Date: March 03, 2021
  • Available Online: June 13, 2024
  • How to test the Navigation System for Intelligent Ships has been an issue in development of Intelligent Ships, which countries all over the world and relevant international organizations are concerned about.Traditional methods for testing ship navigation systems cannot cope with the novel features of intelligent navigation.The features and test requirements of intelligent navigation system are reviewed and analyzed.The idea about the test of intelligent ship navigation system and the concrete test method are presented.A scenario-oriented test system with a variety of test method working in sync is designed.
  • [1]
    高宗江,张英俊,孙培廷,等.无人驾驶船舶研究综述[J].大连海事大学学报, 2017, 43(2):1-7.
    [2]
    许凯玮,张海华,颜开,等.智能船舶海上试验场建设现状及发展趋势[J].舰船科学技术, 2020, 42(15):1-6.
    [3]
    International Maritime Organization (IMO). "Interim guidelines for MASS trials", MSC.1/Circ.1604, 2019.
    [4]
    孙旭.智能船舶专用标准属性和驱动力探讨[J].中国船检, 2021(01):56-58.
    [5]
    PEDERSEN T A, GLOMSRUD J A, RUUD E L, et al.Towards simulation based verification of autonomous navigation systems[J].Safety Science, 2020, 129:104799.
    [6]
    SADJINA S, KYLLINGSTAD L T, RINDAR'Y M, et al.Distributed cosimulation of maritime systems and operations[J].Journal of Offshore Mechanics and Arctic Engineering, 2019, 141(1).
    [7]
    刘佳仑,杨帆,马枫,等.智能船舶航行功能测试验证的方法体系[J].中国舰船研究, 2021, 16(1):45-50.
    [8]
    GAL O.Object Identification in Maritime Environments for ASV Path Planner[J].International Journal of Data Science and Advanced Analytics, 2019, 1(1):18-26.
    [9]
    邓睿哲,陈启浩,陈奇,等.遥感影像船舶检测的特征金字塔网络建模方法[J].测绘学报, 2020, 49(06):787-797.
    [10]
    FARAHNAKIAN F, POIKONEN J, LAURINEN M, et al.Deep convolutional neural network-based fusion of rgb and ir images in marine environment[C].2019 IEEE Intelligent Transportation Systems Conference (ITSC).IEEE, 2019:21-26.
    [11]
    周慧,褚娜,陈澎.复杂场景下的SAR图像船舶目标检测[J].大连海事大学学报, 2020, 46(03):87-94.l.
    [12]
    任宇翔,赵建森,刘卫,等.基于AIS数据和LSTM网络的船舶航行动态预测[J].上海海事大学学报, 2019, 40(03):32-37.
    [13]
    SUO Y F, CHEN W K, CLARAMUNT C, et al.A Ship Trajectory Prediction Framework Based on a Recurrent Neural Network.2020, 20(18):5133-5133.
    [14]
    Cheng Zhong, Zhonglian Jiang, Xiumin Chu, et al.Inland Ship Trajectory Restoration by Recurrent Neural Network.2019, 72(6):1359-1377.
    [15]
    沈海青,郭晨,李铁山,等.考虑航行经验规则的无人船舶智能避碰导航方法[J].哈尔滨工程大学学报, 2018, 39(6):998-1005.
    [16]
    ZHANG X, WANG C, LIU Y, et al.Decision-making for the autonomous navigation of maritime autonomous surface ships based on scene division and deep reinforcement learning[J].Sensors, 2019, 19(18):4055.
    [17]
    GUO S, ZHANG X, ZHENG Y, et al.An Autonomous Path Planning Model for Unmanned Ships Based on Deep Reinforcement Learning[J].Sensors, 2020, 20(2):426.
    [18]
    WOO J, KIM N.Collision avoidance for an unmanned surface vehicle using deep reinforcement learning[J].Ocean Engineering, 2020, 199:107001.
    [19]
    李永杰,张瑞,魏慕恒,等.船舶自主航行关键技术研究现状与展望[J].中国舰船研究, 2021, 16(01):32-44.
    [20]
    李文华,张君彦,林珊颖,等.水面自主船舶技术发展路径[J].船舶工程, 2019, 41(07):64-73.
    [21]
    ANDERSON M.Bon voyage for the autonomous ship Mayflower[J].IEEE Spectrum, 2019, 57(1):36-39.
    [22]
    Sea Machines.Home[EB/OL], https://sea-machines.com/products, 2021-02-20.
    [23]
    中国船级社.智能船舶规范(2020)[M].北京:人民交通出版社, 2020.
    [24]
    ISO.ISO 26262:Road vehicles Functional safety[J].International Standard ISO/FDIS, 2011, 26262.
  • Cited by

    Periodical cited type(3)

    1. 宁君,王二月,李铁山,陈汉民,陈俊龙. 基于事件触发的船舶编队有限时间控制. 船舶工程. 2023(06): 130-139 .
    2. 华先亮,姚望,刘鹏,刘进来,夏华波. 智能航行船舶仿真测试平台构建. 船舶设计通讯. 2023(02): 34-45 .
    3. 李阳. 智能船舶系统设计简介. 船舶标准化与质量. 2023(06): 60-64 .

    Other cited types(6)

Catalog

    Article views (10) PDF downloads (1) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return