Citation: | ZHU Feixiang, LI Guoshuai, WANG Shaobo. Test Method and Test System for Intelligent Ship Navigation System[J]. Navigation of China, 2022, 45(1): 127-132. DOI: 10.3969/j.issn.1000-4653.2022.01.021 |
[1] |
高宗江,张英俊,孙培廷,等.无人驾驶船舶研究综述[J].大连海事大学学报, 2017, 43(2):1-7.
|
[2] |
许凯玮,张海华,颜开,等.智能船舶海上试验场建设现状及发展趋势[J].舰船科学技术, 2020, 42(15):1-6.
|
[3] |
International Maritime Organization (IMO). "Interim guidelines for MASS trials", MSC.1/Circ.1604, 2019.
|
[4] |
孙旭.智能船舶专用标准属性和驱动力探讨[J].中国船检, 2021(01):56-58.
|
[5] |
PEDERSEN T A, GLOMSRUD J A, RUUD E L, et al.Towards simulation based verification of autonomous navigation systems[J].Safety Science, 2020, 129:104799.
|
[6] |
SADJINA S, KYLLINGSTAD L T, RINDAR'Y M, et al.Distributed cosimulation of maritime systems and operations[J].Journal of Offshore Mechanics and Arctic Engineering, 2019, 141(1).
|
[7] |
刘佳仑,杨帆,马枫,等.智能船舶航行功能测试验证的方法体系[J].中国舰船研究, 2021, 16(1):45-50.
|
[8] |
GAL O.Object Identification in Maritime Environments for ASV Path Planner[J].International Journal of Data Science and Advanced Analytics, 2019, 1(1):18-26.
|
[9] |
邓睿哲,陈启浩,陈奇,等.遥感影像船舶检测的特征金字塔网络建模方法[J].测绘学报, 2020, 49(06):787-797.
|
[10] |
FARAHNAKIAN F, POIKONEN J, LAURINEN M, et al.Deep convolutional neural network-based fusion of rgb and ir images in marine environment[C].2019 IEEE Intelligent Transportation Systems Conference (ITSC).IEEE, 2019:21-26.
|
[11] |
周慧,褚娜,陈澎.复杂场景下的SAR图像船舶目标检测[J].大连海事大学学报, 2020, 46(03):87-94.l.
|
[12] |
任宇翔,赵建森,刘卫,等.基于AIS数据和LSTM网络的船舶航行动态预测[J].上海海事大学学报, 2019, 40(03):32-37.
|
[13] |
SUO Y F, CHEN W K, CLARAMUNT C, et al.A Ship Trajectory Prediction Framework Based on a Recurrent Neural Network.2020, 20(18):5133-5133.
|
[14] |
Cheng Zhong, Zhonglian Jiang, Xiumin Chu, et al.Inland Ship Trajectory Restoration by Recurrent Neural Network.2019, 72(6):1359-1377.
|
[15] |
沈海青,郭晨,李铁山,等.考虑航行经验规则的无人船舶智能避碰导航方法[J].哈尔滨工程大学学报, 2018, 39(6):998-1005.
|
[16] |
ZHANG X, WANG C, LIU Y, et al.Decision-making for the autonomous navigation of maritime autonomous surface ships based on scene division and deep reinforcement learning[J].Sensors, 2019, 19(18):4055.
|
[17] |
GUO S, ZHANG X, ZHENG Y, et al.An Autonomous Path Planning Model for Unmanned Ships Based on Deep Reinforcement Learning[J].Sensors, 2020, 20(2):426.
|
[18] |
WOO J, KIM N.Collision avoidance for an unmanned surface vehicle using deep reinforcement learning[J].Ocean Engineering, 2020, 199:107001.
|
[19] |
李永杰,张瑞,魏慕恒,等.船舶自主航行关键技术研究现状与展望[J].中国舰船研究, 2021, 16(01):32-44.
|
[20] |
李文华,张君彦,林珊颖,等.水面自主船舶技术发展路径[J].船舶工程, 2019, 41(07):64-73.
|
[21] |
ANDERSON M.Bon voyage for the autonomous ship Mayflower[J].IEEE Spectrum, 2019, 57(1):36-39.
|
[22] |
Sea Machines.Home[EB/OL], https://sea-machines.com/products, 2021-02-20.
|
[23] |
中国船级社.智能船舶规范(2020)[M].北京:人民交通出版社, 2020.
|
[24] |
ISO.ISO 26262:Road vehicles Functional safety[J].International Standard ISO/FDIS, 2011, 26262.
|
1. |
宁君,王二月,李铁山,陈汉民,陈俊龙. 基于事件触发的船舶编队有限时间控制. 船舶工程. 2023(06): 130-139 .
![]() | |
2. |
华先亮,姚望,刘鹏,刘进来,夏华波. 智能航行船舶仿真测试平台构建. 船舶设计通讯. 2023(02): 34-45 .
![]() | |
3. |
李阳. 智能船舶系统设计简介. 船舶标准化与质量. 2023(06): 60-64 .
![]() |