• Guide to core journal of China
  • CSCD indexed journals
  • JST indexed journals
  • The key magazine of China technology
  • T1 level of high-quality scientific and technological journals of China Association for Science and Technology
LI Chuchu, LIN Qin, FENG Hongxiang, LI Song. A study on sample entropy measure of predictability for container throughput of port[J]. Navigation of China, 2024, 47(1): 81-87. DOI: 10.3969/j.issn.1000-4653.2024.01.010
Citation: LI Chuchu, LIN Qin, FENG Hongxiang, LI Song. A study on sample entropy measure of predictability for container throughput of port[J]. Navigation of China, 2024, 47(1): 81-87. DOI: 10.3969/j.issn.1000-4653.2024.01.010

A study on sample entropy measure of predictability for container throughput of port

More Information
  • Received Date: September 01, 2022
  • The measure of the predictability with historical time-series data of port throughput is one of uncertain issues caused by the strong randomness of the data. It is suggested that the entropy might be a measure for the predictability. This concept is checked out through examining the container throughput time-series data from 20 ports in China. SampEn(Sample Entropy) is used to measure the complexity of the time series data and the ARIMA(Autoregressive Integrated Moving Average)model is used to calculated the container throughput prediction of the port. The research shows that the correlation between SampEn and the predictability is rather weak and the ARIMA model is only good for large ports or growing ports.
  • [1]
    FENG H X, GRIFOLL M, ZHENG P J, et al.Evolution and container traffic prediction of Yangtze River Delta Multi-Port System:2001-2017[J].International Journal of Shipping and Transport Logistics, 2021, 13(1-2):44-69.
    [2]
    XIE G, ZHANG N, WANG S Y.Data characteristic analysis and model selection for container throughput forecasting within a decomposition-ensemble methodology [J].Transportation Research Part E:Logistics and Transportation Review, 2017, 108:160-178.
    [3]
    STEVE P.Approximate entropy as a measure of system complexity[J].Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(6):2297-2301.
    [4]
    RICHMAN J S, MOORMAN J R.Physiological time-series analysis using approximate entropy and sample entropy[J].Am J Physiol-Heart C, 2000, 278(6):2039-2049.
    [5]
    HILL A V, ZHANG W Y, BURCH G F.Forecasting the forecastability quotient for inventory management[J].International Journal of Forecasting, 2015, 31(3):651-663.
    [6]
    PETER C.Entropy as an a priori indicator of forecastability[J].Department of Computing and Information Technology, 2014, 33:1-14.
    [7]
    BOFFETTA G, CENCINI M, FALCIONI M, et al.Predictability:a way to characterize complexity[J].Phys Rep, 2002, 356(6):367-474.
    [8]
    HUANG Y, FU Z T.Enhanced time series predictability with well-defined structures[J].Theoretical and Applied Climatology, 2019, 138(1-2):373-385.
    [9]
    金红梅, 乔梁, 颜鹏程, 等.基于近似熵的中国西北地区干旱的非线性特征[J].干旱气象, 2019, 37(5):713-721.JIN H M, QIAO L, YAN P C, et al.Nonlinear characteristics of drought in northwest China based on approximate entropy[J].Journal of Arid Meteorology, 2019, 37(5):713-721.(in Chinese)
    [10]
    KAUPPI H, VIRTANEN T.Boosting nonlinear predictability of macroeconomic time series[J].International Journal of Forecasting, 2021, 37(1):151-170.
    [11]
    黄元元, 曾俊, 王传彬.中国股市收益非线性可预测性的实证检验[J].湖南财政经济学院学报, 2018, 34(2):14-20.HUANG Y Y, ZENG J, WANG C B.Empirical study on nonlinear predictability of stock returns in China[J].Journal of Hunan University of Finance and Economics, 2018, 34(2):14-20.(in Chinese)
    [12]
    顾子瑜, 陈诺.基于ICAKELM的港口集装箱吞吐量预测模型[J].中国航海, 2022, 45(2):93-99.GU Z Y, CHEN N.An ICAKELM-based model to predict container throughput of ports[J].Navigation of China, 2022, 45(2):93-99.(in Chinese)
    [13]
    江舰, 王海燕, 杨赞.集装箱吞吐量及主要影响因素的计量经济分析[J].大连海事大学学报, 2007, 33(1):83-86.JIANG J, WANG H Y, YANG Z.Econometric analysis based on the throughput of container and its main influential factors[J].Journal of Dalian Maritime University, 2007, 33(1):83-86.(in Chinese)
    [14]
    李文明.基于BP神经网络的福州港集装箱吞吐量预测与分析[J].广州航海学院学报, 2011, 27(7):117-118.LI W M, Research on the container throughput prediction of Xiamen Port based on BP neural network[J].Journal of Guangzhou Maritime University, 2011, 27(7):117-118.(in Chinese)
    [15]
    杨茂, 董骏城, 齐玥.基于近似熵的风电功率可预测性研究[J].太阳能学报, 2016, 37(10):2710-2718.YANG M, DONG J C, QI Y, Predictability of wind power based on approximate entropy[J].Acta Energiae Solaris Sinica, 2016, 37(10):2710-2718.(in Chinese)
    [16]
    XU T, XU X R, HU Y J.An entropy-based approach for evaluating travel time predictability based on vehicle trajectory data[J].Entropy, 2017, 19(4):165.
    [17]
    CHOU C M.Complexity analysis of rainfall and runoff time series based on sample entropy in different temporal scales[J].Stochastic Environmental Research and Risk Assessment, 2014, 28(6):1401-1408.
    [18]
    林明明.认知蜂窝网的容量分析与规划[D].厦门:厦门大学, 2014.LIN M M.Capacity analysis and planning of cognitive cellular networks[D].Xiamen:Xiamen University, 2014.(in chinese)
    [19]
    EFREMIDZE L, STANLEY D J, PARK A.Empirical implementation of entropy risk factor model:a test on Chilean peso[J].Physica a Statistical Mechanics and Its Applications, 2019, 532:121836.
    [20]
    BOX G E P, JENKINS G M.Time series analysis forecasting and control[J].Journal of Time Series Analysis, 1970, 31(3):969-971.
    [21]
    STUART P, LLOYD.Least squares quantization in PCM[J].IEEE Transactions on Industrial Electronics, 1982, 28(2):129-137.
    [22]
    沈晓燕, 王雪梅, 王燕.基于样本熵和模式识别的脑电信号识别算法研究[J].计算机工程与科学, 2020, 42(8):1482-1488.SHEN X Y, WANG X M, WANG Y.An EEG singnal recognition algorithm based on sample entropy and BP neural network[J].Computer Engineering & Science, 2020, 42(8):1482-1488.(in Chinese)
    [23]
    LAKE D E, RICHMAN J S, GRIFFIN M P.Sample entropy analysis of neonatal heart rate variability[J].Am J Physiol Regul Integr Comp Physiol, 2002, 283(3):789-797.
    [24]
    SAMIRA A, NARIMAN S, WU C, et al.Sample entropy of human gait center of pressure displacement:a systematic methodological analysis[J].Entropy, 2018, 20(8):579.
    [25]
    GRAINER L E.Evolution and revolution as organizations grow[J].Harvard business review, 1972, 76(3):37-46.
    [26]
    CHIU R H, YEN D C.Application of organizational life cycle theory for port reform initiatives in Taiwan[J].Research in Transportation Business & Management, 2015, 14:14-24.
  • Related Articles

    [1]KANG Yongtian, LING Aijun, AN Weizheng, MA Qiang, JIN Xinyue. Research on optimization design of umbilical section based on fatigue life of the tube[J]. Navigation of China, 2024, 47(Z1): 203-207. DOI: 10.3969/j.issn.1000-4653.2024.z1.029
    [2]CAI Wei, LI Dongyang, QIAN Jun, CENG Qingsong. Carbon footprint study of LNG-powered ships under methane leakage based on H-LCA[J]. Navigation of China, 2024, 47(4): 123-129. DOI: 10.3969/j.issn.1000-4653.2024.04.016
    [3]LI Xin, ZHANG Jingkai, TANG Xujing, HUANG Jiangfan, SHI Yuhan, YANG Xiangguo. Optimization and economic allocation analysis of hybrid energy storage capacity of fuel cell ship[J]. Navigation of China, 2024, 47(3): 55-64. DOI: 10.3969/j.issn.1000-4653.2024.03.007
    [4]CHEN Lifen, XIE Xinlian, LIN Jiajun. Asymmetry and duration of IBD fluctuation periods based on MS(2)-AR-TVTP model[J]. Navigation of China, 2024, 47(2): 65-71. DOI: 10.3969/j.issn.1000-4653.2024.02.009
    [5]YANG Yuge, HAO Yangyang, WANG Yiwen. Prediction of port cargo throughput using NeuralProphet-LSTM combination model[J]. Navigation of China, 2023, 46(4): 85-92. DOI: 10.3969/j.issn.1000-4653.2023.04.012
    [6]FENG Long-xiang, TANG Xu-jing, LI Xin, YUAN Yu-peng, SUN Yu-wei, YUAN Cheng-qing. Configuring ship duplex energy storage when capacity life cycle of cell is taken into account[J]. Navigation of China, 2023, 46(1): 30-38. DOI: 10.3969/j.issn.1000-4653.2023.01.005
    [7]WANG Fengwu, ZHANG Xiaobo, YAN Jichi, JI Zhe. Prediction of Container Throughput of Shanghai Port with LSTM[J]. Navigation of China, 2022, 45(2): 109-114. DOI: 10.3969/j.issn.1000-4653.2022.02.018
    [8]GENG Can, ZHONG Ming. A Model for Predicting Throughput of Container Port Group and Improving Decision-Making in Pricing Game[J]. Navigation of China, 2022, 45(2): 100-108. DOI: 10.3969/j.issn.1000-4653.2022.02.017
    [9]GU Ziyu, CHEN Nuo. An ICAKELM-Based Model to Predict Container Throughput of Ports[J]. Navigation of China, 2022, 45(2): 93-99. DOI: 10.3969/j.issn.1000-4653.2022.02.016
    [10]WANG Qiandong, MA Quandang, JIANG Fucai. Defining Navigable Waterway of Inland Waters with Entropy Weight TOPSIS Model[J]. Navigation of China, 2022, 45(2): 76-81. DOI: 10.3969/j.issn.1000-4653.2022.02.013
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (13) PDF downloads (1) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return