Citation: | WEI Peng, HU Yahui, ZHU Lewei, HAN Tingxuan. Finite-time three-dimensional trajectory tracking control for underwater vehicle[J]. Navigation of China, 2024, 47(3): 166-172. DOI: 10.3969/j.issn.1000-4653.2024.03.020 |
[1] |
徐健, 汪慢, 乔磊.欠驱动无人水下航行器三维轨迹跟踪的反步控制[J].控制理论与应用, 2014, 31(11):1589-1596.
XU J, WANG M, QIAO L.Backstepping-based controller for three-dimensional trajectory tracking of underactuated unmanned underwater vehicles[J].Control Theory & Applications, 2014, 31(11):1589-1596.
|
[2] |
TABATABA'I-NASAB F S, MOOSAVIAN S, KHALAJI A K.Tracking control of an autonomous underwater vehicle:Higher-order sliding mode control approach[C]//The 7th International Conference on Robotics and Mechatronics.IEEE, 2019:114-119.
|
[3] |
XU J, WANG M, QIAO L.Dynamical sliding mode control for the trajectory tracking of underactuated unmanned underwater vehicles[J].Ocean Engineering, 2015, 105:54-63.
|
[4] |
郭一军, 徐建明.考虑系统总和扰动的多关节机械臂反步有限时间滑模控制[J].重庆大学学报, 2019, 42(7):114-122.
GUO Y J, XU J M.Backstepping finite time sliding mode control for multi-joint manipulator with total disturbance[J].Journal of Chongqing University, 2019, 42(7):114-122.
|
[5] |
杨超, 郭佳, 张铭钧.基于RBF神经网络的作业型AUV自适应终端滑模控制方法及实验研究[J].机器人, 2018, 40(3):336-345.
YANG C, GUO J, ZHANG M J.Adaptive terminal sliding mode control method based on RBF neural network for operational AUV and its experimental research[J].Robot, 2018, 40(3):336-345.
|
[6] |
REZAZADEGAN F, SHOJAEI K, SHEIKHOLESLAM F, et al.A novel approach to 6-DOF adaptive trajectory tracking control of an AUV in the presence of parameter uncertainties[J].Ocean Engineering, 2015, 107:246-258.
|
[7] |
TABATABA'I-NASAB F S, KEYMASI KHALAJI A, MOOSAVIAN S A A.Adaptive nonlinear control of an autonomous underwater vehicle[J].Transactions of the Institute of Measurement and Control, 2019, 41(11):3121-3131.
|
[8] |
YAN Z P, YU H M, LI B Y, et al.Sliding mode trajectory tracking of underactuated UUV on dive plane[C]//Proceedings of the 33rd Chinese Control Conference.IEEE, 2014:7909-7914.
|
[9] |
YAN Z P, YANG Z W, ZHANG J Z, et al.Trajectory tracking control of UUV based on backstepping sliding mode with fuzzy switching gain in diving plane[J].IEEE Access, 2019, 7:166788-166795.
|
[10] |
张伟, 滕延斌, 魏世琳, 等.欠驱动UUV自适应RBF神经网络反步跟踪控制[J].哈尔滨工程大学学报, 2018, 39(1):93-99.
ZHANG W, TENG Y B, WEI S L, et al.Underactuated UUV tracking control of adaptive RBF neural network and backstepping method[J].Journal of Harbin Engineering University, 2018, 39(1):93-99.
|
[11] |
王金强, 王聪, 魏英杰, 等.欠驱动AUV自适应神经网络反步滑模跟踪控制[J].华中科技大学学报(自然科学版), 2019, 47(12):12-17.
WANG J Q, WANG C, WEI Y J, et al.Path following of an underactuated AUV based on adaptive neural network backstepping sliding mode control[J].Journal of Huazhong University of Science and Technology (Nature Science Edition), 2019, 47(12):12-17.
|
[12] |
曹永岩.现代控制理论的工程应用[M].杭州:浙江大学出版社, 2000.
CAO Y Y.Engineering application of modern control theory[M].Hangzhou:Zhejiang University Press, 2000.
|
[13] |
WANG N, HE H K.Extreme learning-based monocular visual servo of an unmanned surface vessel[J].IEEE Transactions on Industrial Informatics, 2020, 17(8):5152-5163.
|
[14] |
BHAT S P, BERNSTEIN D S.Finite-time stability of homogeneous systems[C]// Proceedings of the 1997 American Control Conference.IEEE, 1997, 4:2513-2514.
|
[15] |
QIN H D, CHEN H, SUN Y C.Distributed finite-time fault-tolerant containment control for multiple ocean bottom flying nodes[J].Journal of the Franklin Institute, 2020, 357(16):11242-11264.
|
[16] |
SHTESSEL Y B, SHKOLNIKOV I A, LEVANT A.Smooth second-order sliding modes:missile guidance application[J].Automatica, 2007, 43(8):1470-1476.
|
[17] |
SONG Z K, SUN K B.Adaptive backstepping sliding mode control with fuzzy monitoring strategy for a kind of mechanical system[J].ISA Transactions, 2014, 53(1):125-133.
|
[18] |
FOSSEN T I.Guidance and control of ocean vehicles[M].New York:John Wiley & Sons, 1994.
|
[19] |
陈浩华, 赵红, 王宁, 等.复杂扰动下水下机器人的轨迹精确跟踪控制[J].中国舰船研究, 2022, 17(2):98-108.
CHEN H H, ZHAO H, WANG N, et al.Accurate track control of unmanned underwater vehicle under complex disturbances[J].Chinese Journal of Ship Research, 2022, 17(2):98-108.
|
[20] |
WANG N, HE H K.Dynamics-level finite-time fuzzy monocular visual servo of an unmanned surface vehicle[J].IEEE Transactions on Industrial Electronics, 2019, 67(11):9648-9658.
|
[21] |
LI Z J, SU C Y, WANG L Y, et al.Nonlinear disturbance observer-based control design for a robotic exoskeleton incorporating fuzzy approximation[J].IEEE Transactions on Industrial Electronics, 2015, 62(9):5763-5775.
|
[22] |
于欣波, 贺威, 薛程谦, 等.基于扰动观测器的机器人自适应神经网络跟踪控制研究[J].自动化学报, 2019, 45(7):1307-1324.
YU X B, HE W, XUE C Q, et al.Disturbance observer-based adaptive neural network tracking control for robots[J].Acta Automatica Sinica, 2019, 45(7):1307-1324.
|
[23] |
BASIN M, YU P, SHTESSEL Y.Finite-and fixed-time differentiators utilizing HOSM techniques[J].IET Control Theory & Applications, 2017, 11(8):1144-1152.
|
[24] |
LEVANT A.Higher-order sliding modes, differentiation and output-feedback control[J].International Journal of Control, 2003, 76(9-10):924-941.
|
[25] |
ELMOKADEM T, ZRIBI M.YOUCEF-TOUMI K.Trajectory tracking sliding mode control of underactuated AUVs[J].Nonlinear Dynamics, 2016, 84(2):1079-1091.
|