• Guide to core journal of China
  • CSCD indexed journals
  • JST indexed journals
  • The key magazine of China technology
  • T1 level of high-quality scientific and technological journals of China Association for Science and Technology
WEI Peng, HU Yahui, ZHU Lewei, HAN Tingxuan. Finite-time three-dimensional trajectory tracking control for underwater vehicle[J]. Navigation of China, 2024, 47(3): 166-172. DOI: 10.3969/j.issn.1000-4653.2024.03.020
Citation: WEI Peng, HU Yahui, ZHU Lewei, HAN Tingxuan. Finite-time three-dimensional trajectory tracking control for underwater vehicle[J]. Navigation of China, 2024, 47(3): 166-172. DOI: 10.3969/j.issn.1000-4653.2024.03.020

Finite-time three-dimensional trajectory tracking control for underwater vehicle

More Information
  • Received Date: May 15, 2023
  • With respect to the precise three-dimensional trajectory tracking problem of an underwater vehicle, a finite-time disturbance observer-based continuous control strategy is proposed in the presence of both external disturbances and unmodeled dynamics. Firstly, the finite-time disturbance observer is devised to quickly observe lumped disturbances of the system, and thus the anti-disturbance ability is dramatically improved. Then, by combining with nonlinear feedback and accurate feedforward signals, a continuous three-dimensional trajectory tracking controller is synthesized under the framework of backstepping control, so as to facilitate executions by actual actuators. Also, the closed-loop system is strictly proven to be finite-time stable in the Lyapunov sense. Finally, three-dimensional trajectory tracking simulations are conducted on the famous "REMUS" underwater vehicle. Simulation results show that the proposed control strategy can accurately compensate lumped disturbances of the system, and thereby the underwater vehicle can briskly and precisely track the three-dimensional reference trajectory.
  • [1]
    徐健, 汪慢, 乔磊.欠驱动无人水下航行器三维轨迹跟踪的反步控制[J].控制理论与应用, 2014, 31(11):1589-1596.

    XU J, WANG M, QIAO L.Backstepping-based controller for three-dimensional trajectory tracking of underactuated unmanned underwater vehicles[J].Control Theory & Applications, 2014, 31(11):1589-1596.
    [2]
    TABATABA'I-NASAB F S, MOOSAVIAN S, KHALAJI A K.Tracking control of an autonomous underwater vehicle:Higher-order sliding mode control approach[C]//The 7th International Conference on Robotics and Mechatronics.IEEE, 2019:114-119.
    [3]
    XU J, WANG M, QIAO L.Dynamical sliding mode control for the trajectory tracking of underactuated unmanned underwater vehicles[J].Ocean Engineering, 2015, 105:54-63.
    [4]
    郭一军, 徐建明.考虑系统总和扰动的多关节机械臂反步有限时间滑模控制[J].重庆大学学报, 2019, 42(7):114-122.

    GUO Y J, XU J M.Backstepping finite time sliding mode control for multi-joint manipulator with total disturbance[J].Journal of Chongqing University, 2019, 42(7):114-122.
    [5]
    杨超, 郭佳, 张铭钧.基于RBF神经网络的作业型AUV自适应终端滑模控制方法及实验研究[J].机器人, 2018, 40(3):336-345.

    YANG C, GUO J, ZHANG M J.Adaptive terminal sliding mode control method based on RBF neural network for operational AUV and its experimental research[J].Robot, 2018, 40(3):336-345.
    [6]
    REZAZADEGAN F, SHOJAEI K, SHEIKHOLESLAM F, et al.A novel approach to 6-DOF adaptive trajectory tracking control of an AUV in the presence of parameter uncertainties[J].Ocean Engineering, 2015, 107:246-258.
    [7]
    TABATABA'I-NASAB F S, KEYMASI KHALAJI A, MOOSAVIAN S A A.Adaptive nonlinear control of an autonomous underwater vehicle[J].Transactions of the Institute of Measurement and Control, 2019, 41(11):3121-3131.
    [8]
    YAN Z P, YU H M, LI B Y, et al.Sliding mode trajectory tracking of underactuated UUV on dive plane[C]//Proceedings of the 33rd Chinese Control Conference.IEEE, 2014:7909-7914.
    [9]
    YAN Z P, YANG Z W, ZHANG J Z, et al.Trajectory tracking control of UUV based on backstepping sliding mode with fuzzy switching gain in diving plane[J].IEEE Access, 2019, 7:166788-166795.
    [10]
    张伟, 滕延斌, 魏世琳, 等.欠驱动UUV自适应RBF神经网络反步跟踪控制[J].哈尔滨工程大学学报, 2018, 39(1):93-99.

    ZHANG W, TENG Y B, WEI S L, et al.Underactuated UUV tracking control of adaptive RBF neural network and backstepping method[J].Journal of Harbin Engineering University, 2018, 39(1):93-99.
    [11]
    王金强, 王聪, 魏英杰, 等.欠驱动AUV自适应神经网络反步滑模跟踪控制[J].华中科技大学学报(自然科学版), 2019, 47(12):12-17.

    WANG J Q, WANG C, WEI Y J, et al.Path following of an underactuated AUV based on adaptive neural network backstepping sliding mode control[J].Journal of Huazhong University of Science and Technology (Nature Science Edition), 2019, 47(12):12-17.
    [12]
    曹永岩.现代控制理论的工程应用[M].杭州:浙江大学出版社, 2000.

    CAO Y Y.Engineering application of modern control theory[M].Hangzhou:Zhejiang University Press, 2000.
    [13]
    WANG N, HE H K.Extreme learning-based monocular visual servo of an unmanned surface vessel[J].IEEE Transactions on Industrial Informatics, 2020, 17(8):5152-5163.
    [14]
    BHAT S P, BERNSTEIN D S.Finite-time stability of homogeneous systems[C]// Proceedings of the 1997 American Control Conference.IEEE, 1997, 4:2513-2514.
    [15]
    QIN H D, CHEN H, SUN Y C.Distributed finite-time fault-tolerant containment control for multiple ocean bottom flying nodes[J].Journal of the Franklin Institute, 2020, 357(16):11242-11264.
    [16]
    SHTESSEL Y B, SHKOLNIKOV I A, LEVANT A.Smooth second-order sliding modes:missile guidance application[J].Automatica, 2007, 43(8):1470-1476.
    [17]
    SONG Z K, SUN K B.Adaptive backstepping sliding mode control with fuzzy monitoring strategy for a kind of mechanical system[J].ISA Transactions, 2014, 53(1):125-133.
    [18]
    FOSSEN T I.Guidance and control of ocean vehicles[M].New York:John Wiley & Sons, 1994.
    [19]
    陈浩华, 赵红, 王宁, 等.复杂扰动下水下机器人的轨迹精确跟踪控制[J].中国舰船研究, 2022, 17(2):98-108.

    CHEN H H, ZHAO H, WANG N, et al.Accurate track control of unmanned underwater vehicle under complex disturbances[J].Chinese Journal of Ship Research, 2022, 17(2):98-108.
    [20]
    WANG N, HE H K.Dynamics-level finite-time fuzzy monocular visual servo of an unmanned surface vehicle[J].IEEE Transactions on Industrial Electronics, 2019, 67(11):9648-9658.
    [21]
    LI Z J, SU C Y, WANG L Y, et al.Nonlinear disturbance observer-based control design for a robotic exoskeleton incorporating fuzzy approximation[J].IEEE Transactions on Industrial Electronics, 2015, 62(9):5763-5775.
    [22]
    于欣波, 贺威, 薛程谦, 等.基于扰动观测器的机器人自适应神经网络跟踪控制研究[J].自动化学报, 2019, 45(7):1307-1324.

    YU X B, HE W, XUE C Q, et al.Disturbance observer-based adaptive neural network tracking control for robots[J].Acta Automatica Sinica, 2019, 45(7):1307-1324.
    [23]
    BASIN M, YU P, SHTESSEL Y.Finite-and fixed-time differentiators utilizing HOSM techniques[J].IET Control Theory & Applications, 2017, 11(8):1144-1152.
    [24]
    LEVANT A.Higher-order sliding modes, differentiation and output-feedback control[J].International Journal of Control, 2003, 76(9-10):924-941.
    [25]
    ELMOKADEM T, ZRIBI M.YOUCEF-TOUMI K.Trajectory tracking sliding mode control of underactuated AUVs[J].Nonlinear Dynamics, 2016, 84(2):1079-1091.

Catalog

    Article views (23) PDF downloads (6) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return