基于数据挖掘的耙吸式挖泥船行为辨识方法

    Data-mining-based Identification of Behavior of Drag Suction Dredger

    • 摘要: 基于轨迹数据的船舶行为高效辨识对于耙吸式挖泥船施工效率优化具有重要意义。耙吸式挖泥船往返施工作业,行为模式改变频繁,轨迹路径密集,行为辨识存在较大困难。针对耙吸式挖泥船AIS (Automatic Identification System)航行状态数据缺失问题,提出一种无监督船舶行为辨识方法。该方法采用DBSCAN (Density-Based Spatitcal Clustering of Applications with Noise)原理,以平均航速代替密度阈值定义核心点,根据行为特征划分阈值区间,实现多模式同步聚类,达到耙吸式挖泥船行为高效辨识的效果;同时利用辨识得到的挖泥行为对挖泥船施工区域面积、施工时长等效率指标进行进一步分析。

       

      Abstract: A method of unsupervised identification of the behavior of drag suction dredger, which features frequently changing operation mode and closely distributed sailing trajectory. Since AIS information is usually not available, an unsupervised identification method is adopted. The identification algorithm is developed based on DBSCAN. The core point of clustering is defined according to the average speed instead of density and threshold range is set for different features. The multi-mode synchronized clustering achieves highly efficient identification. The operation location, dredged area, time spent and other performance indicators are further analyzed based on the identification output.

       

    /

    返回文章
    返回