基于距离分布的AIS异常数据处理方法

    Outlier Processing of AIS Data According to Distance Distribution

    • 摘要: 为消除由于环境、设备和传输等影响所导致的船舶自动识别系统(Automatic Identification System,AIS)数据在时间和空间上的异常或错误,保证数据挖掘质量,提出一种基于距离分布的AIS粗数据处理算法。以2018年3月28日上海洋山港附近海域的AIS粗数据为例,标绘出船舶AIS轨迹图,验证算法的可行性和有效性。结果表明:该算法只需根据更新距离的均值和标准差,即可消除由于海上移动业务识别码(Maritime Mobile Service Identity,MMSI)误共用、AIS信息更新时间完整性与位置信息异常所引起的数据异常或错误,计算效率高、普适性强,可有效提高AIS轨迹的质量。

       

      Abstract: An outlier processing algorism for AIS(Automatic Identification System) data mining is developed to address abnormal/erroneous time/position measurements caused by uncertainty in environment, equipment or transmission process. The algorithm is used to process the raw AIS data from Shanghai Yangshan Harbor in March 28 th, 2018 for illustration. The ship tracks based on AIS messages are plotted. The experiment shows that according to the average and standard deviation of measurements, the algorithm can effectively eliminate errors caused by erroneous association of maritime mobile service identity or errors in updating time/positioning.

       

    /

    返回文章
    返回