基于深度强化学习的船舶航线自动规划

    Automatic Ship Route Planning Based on Deep Reinforcement Learning

    • 摘要: 为解决传统船舶航线规划算法缺少对经验航线的参考及不适用于真实航行需求的问题,提出一种基于深度Q网络(Deep Q Network,DQN)船舶航线自动规划算法,用以在电子海图中提供拟合航道,生成适宜真实航行情况的自动规划航线。这种算法采用当前神经网络和目标神经网络2个二层神经网络结构,达到打乱数据相关性的目的,将智能体的经验存储为经验池,通过随机采样,防止出现局部收敛的问题,实现对未训练的电子海图进行航线规划的功能。通过计算机仿真和实际规划验证,说明该方法可有效实现设计功能。

       

      Abstract: The DQN(Deep Q Network) algorithm is introduced into automatic ship route planning to improve the practicality of the output route proposal through learning from actual routes taken by experienced navigators. The algorithm consists of two two-layer neural networks, the actual neural network and the target neural network. The purpose of the arrangement is to avoid data dependence. The experience of the agent is stored in the experience replay buffer and referenced randomly to prevent local convergence. The algorithm works whether the chart in use is same as the one for network training or not.

       

    /

    返回文章
    返回