基于SVR的船舶操纵运动黑箱建模

    Black-box Modeling of Ship Maneuvering by Means of SVR

    • 摘要: 为使用支持向量回归(Support Vector Regression,SVR)为船舶操纵运动黑箱建模,针对原样本无法对转艏角速度构建黑箱映射关系的问题,提出两种样本构造方法,并讨论不同样本的构造方法对预报结果精度的影响;对于在黑箱建模过程中模型核函数参数的选取,使用网格搜索交叉验证进行寻优,通过不同参数对预测值准确度的影响证明参数寻优的重要性。以KVLCC2为例,对SVR黑箱模型进行训练,预报10°/10°、20°/20°Z形运动和35°回转运动,基于该模型泛化预报了15°/15°Z形运动和15°、25°回转运动,验证SVR黑箱模型用于船舶操纵运动的有效性和良好的泛化性。

       

      Abstract: Directly mapping primitive samples to yaw velocity is infeasible when constructing black-box model of ship maneuvering by means of SVR(Support Vector Regression). Two ways of building the sample structure are devised to solve this problem. The prediction accuracy difference between the two ways is discussed. The parameters of the kernel function are optimized through grid search cross validation. The impact of variation of parameters to prediction accuracy is demonstrated to justify the effort of optimization. Taking KVLCC2 as an example, the SVR black-box model is trained to predict 10°/10°, 20°/20° zigzag tests and 35° turning circle maneuver. The effectiveness and generalization performance of the proposed model are verified through predicting 15°/15° zigzag test and 15°, 25°turning circle maneuver.

       

    /

    返回文章
    返回