Design of ship waste-gas cleaning packing tower and desulfurization performance simulation
-
摘要: 为研究船舶混合模式脱硫过程中使用海水脱硫的主要参数(废气量、入口二氧化硫浓度、液气比)以及使用碱液脱硫的主要参数(循环液pH、废液排出量、液气比)对脱硫塔脱硫效率的影响,使用化工流程模拟软件Aspen Plus V10对W6X35型船用柴油机废气填料塔脱硫过程进行了模拟分析并根据模拟结果对运行参数进行了优化。模拟结果表明:海水脱硫时,液气比是重要调控参数,应根据负荷、油含硫量变化相应地在3~7 L/Nm3范围内调节合适的液气比。碱液脱硫时,废液排放量是一个重要参数,对脱硫效率、亚硫酸钠饱和结晶及废水处理量影响大,运行时应控制在0.105~0.152 kg/kW·h范围内并维持在低值;循环液pH、液气比对脱硫效率和运行经济性影响较大,循环液pH以6.5为宜、液气比以3~4 L/Nm3为宜。Abstract: In order to investigate the impact of the parameters of seawater desulfurization process, such as exhausted air quantity, inlet SO2 concentration and liquid to gas ratio, and the parameters of alkaline liquor desulfurization process, such as pH value of Circulating liquid, waste liquid discharge, liquid to gas ratio, on the efficiency of desulfurization tower, simulation of desulfurization process in the packing tower for W6X35 diesel engine is carried out by means of chemical process simulation software Aspen Plus V10. The parameters are optimized through the simulation. The simulations reveal that, for seawater desulfurization, the liquid to gas ratio is an important control parameter, that should be adjusted within the range of 3~7 L/Nm3 according to processing load and fuel sulfur content, while for alkaline liquor desulfurization, waste liquid discharge has the greatest impact on desulfurization efficiency, Na2SO3 crystallization from the saturated solution and waste liquid treatment load and should be adjusted within the range of 0.105~0.152 kg/kW·h, the lower end being preferable. pH value of circulating liquid and liquid to gas ratio affect the desulfurization efficiency and operation economy rather significantly and preferred values are 6.5 for pH value of circulating liquid and 3~4 L/Nm3 for liquid to gas ratio.
-
-
[1] 牟军敏,张新生,姚鑫,等.基于航行数据的北极地区船舶排放清单[J].交通运输工程学报,2019,19(5):116-124.MOU J M,ZHANG X S,YAO X,et al.Emission inventory of ship based on navigation data in Arctic region[J].Journal of Transportation Engineering,2019,19(5):116-124.(in Chinese) [2] 汪宗御,张继锋,纪玉龙.船舶尾气污染物排放控制研究进展[J].化工进展,2017,36(6):2289-2297.WANG Z Y,ZAHNG J F,JI Y L.Research progress of emission control on ship exhaust pollutants[J].Chemical Industry and Engineering Progress,2017,36(6):2289-2297.(in Chinese) [3] KANG D W,JANG H J,KIM T S.Using compressor discharge air bypass to enhance power generation of a steam-injected gas turbine for combined heat and power[J].Energy,2014,76(C):390-399.
[4] 吴斌,李欣,王怡.船舶废气脱硫技术的应用[J].船海工程,2019,48(2):48-50.WU B,LI X,WANG Y.Application of ship exhaust gas desulfurization technology[J].Ship&Ocean Engineering,2019,48(2):48-50.(in Chinese) [5] 向轶,吕文豪,杨国华,等.基于湿法脱硫工艺的船舶尾气处理系统设计分析[J].四川环境,2020,39(3):97-103.XIANG Y,LYU W H,YANG G H,et al.Design and analysis of marine exhaust gas treatment system based on wet desulfurization process[J].Sichuan Environment,2020,39(3):97-103.(in Chinese) [6] LONG N V D,LEE D Y,JIN K M,et al.Advanced and intensified seawater flue gas desulfurization processes:recent developments and improvements[J].Energies,2020,13(22).
[7] 产文兵,万皓,宋桂东,等.钠碱法烟气脱硫工艺技术[J].上海大学学报(自然科学版),2013,19(5):474-478.CHAN W B,WAN H,SONG G D,et al.FGD process technology with sodium alkaline method[J].Journal of Shanghai University (Natural Science Edition),2013,19(5):474-478.(in Chinese) [8] 黄博伦,杨国华.船舶废气洗涤脱硫脱硝和脱PM细颗粒设备研究进展[J].化工进展,2013,32(12):2826-2831.HUANG B L,YANG G H.Research progress of ship exhaust gas cleaning desulfurization denitration and PM removal equipment[J].Chemical Industry and Engineering Progress,2013,32(12):2826-2831.(in Chinese) [9] GUAN Y P,LI X M,ZHANG Z C,et al.Application and research progress of seawater desulfurization technology[J].Electric Power,2012,45(2):40-44.
[10] MISIULIA D,ANTONYUK S,ANDERSSON A G,et al.High-efficiency industrial cyclone separator:a CFD study[J].Powder Technology,2020,364:943-953.
[11] 刘学.钠碱法船舶尾气处理技术及试验[D].哈尔滨:哈尔滨工程大学动力与能源工程学院,2017.LIU X.The technology and experimental study of marine exhaust gas treatment based on natrium-alkali method[D].Harbin:Harbin Engineering University marine engineering,2017.(in Chinese) [12] ZHOU J X,ZHOU S,ZHU Y Q.Characterization of particle and gaseous emissions from marine diesel engines with different fuels and impact of after-treatment technology[J].Energies,2017,10(8):1-14.
[13] CHU G W,FEI J,CAI Y,et al.Removal of SO2 with sodium sulfite solution in a rotating packed bed[J].Industrial&Engineering Chemistry Research,2018,57(6):2329-2335.
[14] MARTINEZ A H.Study of exhaust gas cleaning systems for vessels to fulfill IMO III in 2016[D].Barcelona:Universitat Politècnica de Catalunya,2011.
[15] 尚政伟,杨国华,况敏,等.柴油机废气梯级洗涤脱硫试验[J].热能动力工程,2018,33(3):100-104.SHANG Z W,YANG G H,KUANG M,et al.Experiment of cascade-scrubbing desulfurization performance for diesel engine exhaust gas[J].Journal of Engineering for Thermal Energy and Power,2018,33(3):100-104.(in Chinese) [16] 王伟之,张锦瑞,张书廷,等.填料塔中钠碱溶液脱除烟气中SO2研究[J].化学工程,2008(1):67-70.WANG W Z,ZAHNG J R,ZHANG S T,et al.Research on SO2 absorption in flue gas by sodium alkali solution in packing column[J].Chemical Engineering (China),2008(1):67-70.(in Chinese) [17] 林世华,罗凯.影响钠碱法烟气脱硫效率的因素分析与工艺优化[J].能源环境保护,2011,25(1):41-44.LIN S H,LUO K.Analysis of factors that affect desulphurization efficiency of FGD by sodium alkali and optimization of desulphurization system[J].Energy Environmental Protection,2011,25(1):41-44.(in Chinese) -
期刊类型引用(0)
其他类型引用(1)
计量
- 文章访问数: 5
- HTML全文浏览量: 0
- PDF下载量: 0
- 被引次数: 1