复杂背景下的SAR图像多尺度舰船检测
Multi-scale detection of ship target against complex background out of SAR image
-
摘要: 合成孔径雷达(Synthetic Aperture Radar, SAR)图像中复杂背景舰船目标的定位和检测,是SAR图像用于海洋监测的关键技术之一。提出一种基于跨连接特征金字塔网络(Cross Connected Feature Pyramid Networks, CCFPN)的SAR图像多尺度舰船目标检测算法,较好地解决了复杂背景下的多尺度目标检测问题。构建CCFPN增强舰船目标深层特征与浅层特征的传递;利用多路空洞卷积提高浅层特征提取能力;使用通道拼接方式丰富融合后特征图的信息量。所提出的算法在公开数据集的检测结果表明:该算法能够实现不同数据集复杂、模糊背景下的舰船多尺度目标检测,算法的平均精度(Average Precision, AP)达到95.62%,整体性能优于现有主流目标检测算法。Abstract: A multi-scale ship detection algorithm for SAR image processing is developed based on CCFPN(Cross-Connected-Feature Pyramid Networks) to improve the ship detection against a complex background. The cross-connected pyramid network is used to enhance the transmission of target’s deep feature and shallow feature. The multi-channel dilated convolution is used to improve the shallow feature extraction. The channel merge is performed to enrich the information contained in the feature map. The algorithm is verified with publicly available data. Experiments show that an AP(Average Precision) of 95.62 % is achieved with overall performance improvement.