基于BN的LNG船装卸泄漏风险分析

    Bayesian network to analyze leakage risks in LNG ship loading and unloading

    • 摘要: 为降低液化天然气(Liquefied Natural Gas, LNG)船装卸作业泄漏风险,针对LNG船泄漏事故样本数据不足的问题,提出一种基于贝叶斯网络(Bayesian Network, BN)的LNG船装卸泄漏风险分析模型,结合核密度估计(Kernel Density Estimation, KDE)和最大最小爬山算法进行BN结构学习,以数据驱动的方法减少主观因素对BN结构学习的影响。试验表明:该模型可有效挖掘导致LNG船装卸泄漏事故发生的风险节点,并通过反向推理及对应事故致因节点的后验概率,推理事故致因链及各节点的影响程度,有针对性地提出降低LNG泄漏风险的建议,为保障LNG船装卸安全提供信息支持。

       

      Abstract: Analyzing the leakage risk associated with LNG(Liquefied Natural Gas) ship loading/unloading is a challenging task because of inadequate accident sample data. The BN(Bayesian Network) is introduced to address the issue. The KDE(Kernel Density Estimation) and the max-min hill-climbing algorithm is used for structure learning of BN to reduce the impact of subjective factors. Experiments show that the model can effectively mine the risk nodes leading to LNG leakage accidents, infer the accident cause chain and find the influence degree of each node through reverse reasoning and the posterior probability of the corresponding accident cause nodes. The measures to reduce the risk can be figured out with the help of the model.

       

    /

    返回文章
    返回