• 中文核心期刊
  • CSCD收录期刊
  • JST 收录期刊
  • 中国科技核心期刊
  • 中国科协高质量科技期刊T1级

基于GIS的核密度分析方法在海上浮标平台选址中的应用研究

韩玉祥, 陈亮

韩玉祥, 陈亮. 基于GIS的核密度分析方法在海上浮标平台选址中的应用研究[J]. 中国航海, 2023, 46(3): 59-64,71. DOI: 10.3969/j.issn.1000-4653.2023.03.009
引用本文: 韩玉祥, 陈亮. 基于GIS的核密度分析方法在海上浮标平台选址中的应用研究[J]. 中国航海, 2023, 46(3): 59-64,71. DOI: 10.3969/j.issn.1000-4653.2023.03.009
HAN Yuxiang, CHEN Liang. Application of GIS-based kernel density estimation in location selection of offshore buoy platforms[J]. Navigation of China, 2023, 46(3): 59-64,71. DOI: 10.3969/j.issn.1000-4653.2023.03.009
Citation: HAN Yuxiang, CHEN Liang. Application of GIS-based kernel density estimation in location selection of offshore buoy platforms[J]. Navigation of China, 2023, 46(3): 59-64,71. DOI: 10.3969/j.issn.1000-4653.2023.03.009

基于GIS的核密度分析方法在海上浮标平台选址中的应用研究

详细信息
    作者简介:

    韩玉祥(1998—),男,硕士生,研究方向为海上交通仿真。E-mail:hyx12306@qq.com

    通讯作者:

    陈亮(1987—),男,博士,研究方向为海上通信、海事搜救等。E-mail:chenliang@shmtu.edu.cn

  • 中图分类号: U656.6

Application of GIS-based kernel density estimation in location selection of offshore buoy platforms

  • 摘要: 为有效掌握海上浮标平台在选址过程中对海上交通流的影响,优化选址方案,提出一种利用船舶自动识别系统(Automatic Identification System, AIS)数据基于地理信息系统(Geographic Information System, GIS)核密度分析的海上浮标平台选址分析方法。通过建立海上交通流的核密度模型,形成选址水域的船舶交通流核密度估计(Kernel Density Estimation, KDE),得到交通流的特征。设置核密度值范围与相对应的颜色,完成核密度值的图像显示。对得到的各月份核密度图进行处理,用以确定浮标平台的备选范围。结合选址水域通航环境的分析,为海上浮标平台的选址提供建议。实例分析表明,基于GIS的核密度分析方法能较好地为海上浮标平台选址提供参考依据。
    Abstract: AIS(Automatic Identification System) data is used to improve the location selection of offshore buoy platforms through introduction of a GIS(Geographic Information System)-based kernel density estimation algorithm. A kernel density model of marine traffic flow is built to calculate the traffic density in candidate water areas and find the characteristics of the traffic flow in each area. The traffic flow is graded on density basis and displayed in different colors. The traffic density map of every candidate location is processed on monthly basis and the suitable buoy locations are picked up. Final location selection suggestion is made after examining the navigational environment of these locations. The effectiveness of the algorithm is demonstrated through a practical engineering case.
  • [1] 王波, 李民, 刘世萱, 等.海洋资料浮标观测技术应用现状及发展趋势[J].仪器仪表学报, 2014, 35(11):2401-2414.WANG B, LI M, LIU S X, et al.Current status and trend of ocean data buoy observation technology applications[J].Chinese Journal of Scientific Instrument, 2014, 35(11):2401-2414.(in Chinese)
    [2] 国家市场监督管理总局.海洋观测规范:GB/T 14914.3—2021[S].北京:中国标准出版社, 2021.State Administration for Market Regulation.The specification for marine observation:GB/T 14914.3—2021[S].Beijing:Standards Press of China, 2021.(in Chinese)
    [3] 庞仁松, 周凯, 冷科明, 等.深圳市海域浮标监测网的站位设计和数据应用[J].海洋开发与管理, 2018, 35(2):49-53.PANG R S, ZHOU K, LENG K M, et al.The station design and data application of buoy monitoring network in Shenzhen sea area[J].Ocean Development and Management, 2018, 35(2):49-53.(in Chinese)
    [4] 李天深, 刘方, 庄马展, 等.近岸海域水质自动监测系统站位的布设[J].中国环境监测, 2014, 30(2):182-185.LI T S, LIU F, ZHUANG M Z, et al.The site layout of the automatic monitoring system in coastal areas[J].Environmental Monitoring in China, 2014, 30(2):182-185.(in Chinese)
    [5] 聂园园, 刘克中, 杨星, 等.海上风电场与航路安全距离[J].中国航海, 2019, 42(4):12-17.NIE Y Y, LIU K Z, YANG X, et al.Safety distance between offshore wind farms and ship routes[J].Navigation of China, 2019, 42(4):12-17.(in Chinese)
    [6] 查振昊.基于船舶通航安全的海上风电场选址研究[D].厦门:集美大学, 2021.ZHA Z H.Research on location selection of offshore wind farm based on ship navigation safety[D].Xiamen:Jimei University, 2021.(in Chinese)
    [7] 龙雪琴, 周萌, 赵欢, 等.基于网络核密度的网约车上下客热点识别[J].交通运输系统工程与信息, 2021, 21(3):86-93.LONG X Q, ZHOU M, ZHAO H, et al.Passengers’ hot spots identification of online car-hailing based on network kernel density[J].Journal of Transportation Systems Engineering and Information Technology, 2021, 21(3):86-93.(in Chinese)
    [8] 刘虎, 李伟峰.基于AIS数据的海上交通流区域自动识别[J].中国航海, 2016, 39(4):87-90.LIU H, LI W F.Automatic recognition of marine traffic flow with AIS data[J].Navigation of China, 2016, 39(4):87-90.(in Chinese)
    [9] 尹章才, 康自强.时间地理支持下的核密度估计研究进展[J].地理科学进展, 2022, 41(1):64-72.YIN Z C, KANG Z Q.Advances in kernel density estimation supported by time geography[J].Progress in Geography, 2022, 41(1):64-72.(in Chinese)
    [10] 孙志华.非参数与半参数统计[M].北京:清华大学出版社, 2016:9-10.SUN Z H.Nonparametric and semiparametric statistics[M].Beijing:Tsinghua University Press, 2016:9-10.(in Chinese)
    [11] 王颖志, 王立君.基于网络时空核密度的交通事故多发点鉴别方法[J].地理科学, 2019, 39(8):1238-1245.WANG Y Z, WANG L J.An identification method of traffic accident black point based on street-network spatial-temporal kernel density estimation[J].Scientia Geographica Sinica, 2019, 39(8):1238-1245.(in Chinese)
    [12] 冯宏祥, ANNA M C, 杨忠振.基于距离分布的AIS异常数据处理方法[J].中国航海, 2021, 44(4):26-31.FENG H X, ANNA M C, YANG Z Z.Outlier processing of AIS data according to distance distribution[J].Navigation of China, 2021, 44(4):26-31.(in Chinese)
    [13]

    OKABE A, SATOH T, SUGIHARA K.A kernel density estimation method for networks, its computational method and a GIS-based tool[J].International Journal of Geographical Information Science, 2009, 23(1):7-32.

    [14] 马梦知, 范厚明, 黄莒森, 等.基于非参数核密度估计的集装箱码头交通需求预测模型[J].大连海事大学学报, 2019, 45(1):74-81.MA M Z, FAN H M, HUANG J S, et al.Traffic demand forecasting model for container terminal based on non-parametric kernel density estimation[J].Journal of Dalian Maritime University, 2019, 45(1):74-81.(in Chinese)
    [15] 南海航海保障中心.北部湾广西水域船舶航行指南[M].北京:人民交通出版社, 2017.Southern Navigation Service Center.Navigation guide for ships in Guangxi waters of the Beibu Gulf[M].Beijing:China Communications Press, 2017.(in Chinese)
  • 期刊类型引用(2)

    1. 黄维灿. 基于GIS的成都市茶馆空间布局特征研究. 城市建筑. 2024(07): 111-115 . 百度学术
    2. 李环宇,李东平,尹晶飞,李敏,孙海青. 新疆乌什7.1级地震人口热力及其应急响应功能分析. 地震工程学报. 2024(04): 992-1000 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  10
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-03-01

目录

    /

    返回文章
    返回