基于GRU-Attention-BiLSTM的船舶轨迹预测模型

    Research on ship trajectory prediction model based on GRU-Attention-BiLSTM

    • 摘要: 针对复杂通航水域中船舶轨迹预测准确性不高的问题,提出了基于GRU-Attention-BiLSTM的船舶轨迹预测模型,该模型编码器部分使用门控循环单元(GRU)来捕捉轨迹序列中的时序特征,解码器采用双向长短期记忆网络(Bi LSTM)并加入注意力(Attention)机制来调整数据特征的权值。以历史时刻的船舶经度、纬度、速度及航向为模型输入基础特征,同时引入中值滤波平滑处理后的水域船舶密度作为附加特征。选取宁波舟山港核心港区2024年3月的AIS数据进行模型的训练和验证,并与GRU、LSTM、Seq2Seq-LSTM、Attention-BiLSTM和Transformer模型进行定量和定性对比,结果表明本文模型在不同的预测时长和航行场景下都有更优的预测结果。

       

      Abstract: To address the issue of low accuracy in ship trajectory prediction in complex navigable waters,this paper proposes a GRU-Attention-BiLSTM model for ship trajectory prediction. In the encoder part,the Gated Recurrent Unit( GRU) is employed to capture temporal features in trajectory sequences. The decoder adopts a Bidirectional Long ShortTerm Memory Network( Bi LSTM) integrated with an Attention mechanism to adjust the weights of data features. The model input is based on the longitude,latitude,speed and heading of the ship at the historical moment,and the ship density in the water area after median filtering smoothing is introduced as an additional feature. Using Automatic Identification System( AIS) data from the core port area of Ningbo-Zhoushan Port in March 2024,the model was trained and validated.Quantitative and qualitative comparisons with GRU,LSTM,Seq2 Seq-LSTM,Attention-BiLSTM,and Transformer models demonstrate that the proposed model achieves superior prediction performance across different prediction durations and navigation scenarios.

       

    /

    返回文章
    返回